
Nonlinear Programming Strategies for StateEstimation and Model Preditive ControlVitor M. Zavala and Lorenz T. BieglerDepartment of Chemial Engineering, Carnegie Mellon University, USAfvzavala,lb01g�andrew.mu.eduKeywords : large-sale, MHE, NMPC , nonlinear programming, sensitivity,interior-point methods, sparse linear algebraAbstrat : Sensitivity-based strategies for on-line moving horizon estimation(MHE) and nonlinear model preditive ontrol (NMPC) are presented both froma stability and omputational perspetive. These strategies make use of full-spae interior-point nonlinear programming (NLP) algorithms and NLP sensi-tivity onepts. In partiular, NLP sensitivity allows us to partition the solutionof the optimization problems into bakground and negligible on-line omputa-tions, thus avoiding the problem of omputational delay even with large dynamimodels. We demonstrate these developments through a distributed polymeriza-tion reator model ontaining around 10,000 di�erential and algebrai equations(DAEs).1 IntrodutionGeneral model-based ontrol frameworks based on MHE and NMPC representan attrative alternative for the operation of omplex proesses. These frame-works allow the inorporation of highly sophistiated dynami proess modelsand the diret handling of multivariable interations and operational onstraints.In addition, the potential of inorporating detailed �rst-priniples models allowsa loser interation of the ontroller with traditional eonomi optimization lay-ers suh as real-time optimization (RTO). Cruial enabling developments forthis inlude: a) inreased proess understanding leading to highly-detailed �rst-priniples dynami proess models, b) enhaned formulations with stability androbustness guarantees, ) advanes in numerial strategies for DAE-onstrainedoptimization and NLP algorithms, and d) advanes in omputational resouresinluding the availability of parallel and multi-ore tehnology.In this work, speial emphasis is made on the numerial solution aspets andperformane of ombined MHE and NMPC strategies. In partiular, a generalsolution framework based on interior-point NLP solvers and sensitivity oneptsis onsidered. In the following setion, we introdue some basi onepts andnotation and desribe spei� formulations of the MHE and NMPC nonlinearprogramming problems. In Setion 3 we disuss advantages of interior-pointNLP solvers and present some basi NLP sensitivity results. In Setion 4 wederive advaned-step approximation strategies for MHE and NMPC, based onNLP sensitivity to redue on-line omputational time. We also disuss theirgeneral stability and performane properties, espeially when both are appliedInt. Workshop on Assessment and Future Diretions of NMPCPavia, Italy, September 5-9, 2008



Invited Papertogether. In Setion 5, the potential of the ombined MHE and NMPC solutionframework is demonstrated on a large-sale ase study involving the simulta-neous monitoring and ontrol of a distributed low-density polyethylene tubularreator. The paper then loses with general onlusions and reommendations.2 MHE and NMPC FormulationsWe begin with a disrete-time dynami model of an unertain plant of the form,xk+1 = f(xk; uk) + �k; yk+1 = �(xk+1) + vk+1 (1a)where xk 2 <nx is the true plant state at time instant tk and uk 2 <nu is theimplemented ontrol ation. The nonlinear dynami model f(�; �) : <nx+nu !<nx is the nominal model and satis�es f(0; 0) = 0. The observed output yk 2<ny with ny � nx is related to the state-spae xk through the nonlinear mapping�(�) : <nx ! <ny . The true plant deviates from the nominal predition due tothe proess disturbane �k 2 <nx and measurement noise vk 2 <ny .Assume that the plant is urrently loated at sampling time tk with the out-put and input measurements �mhek := fyk�N ; :::; yk; uk�N ; :::; uk�1g distributedover a horizon ontaining N steps. The output measurement ovariane is givenby R 2 <ny�ny . The a priori estimate of the past state of the plant is denotedas �xk�N and has an assoiated ovariane �0;k 2 <nx�nx . Using this informa-tion, we would like to ompute an estimate ~xk of the urrent state xk. In orderto do this, we solve the MHE problem,M(�mhek ) minz0 kz0 � �xk�Nk2��10;k + NXl=0 kyk+l�N � �(zl)k2R�1 (2a)s.t. zl+1 = f(zl; uk+l�N ); l = 0; :::; N � 1 (2b)zl 2 X (2)All the MHE problem data an be summarized in the vetor �mhek . Symbolszl 2 <nx are internal deision variables of the optimization problem. Thisproblem has nx degrees of freedom orresponding to z0. From the solutiontrajetory, fz�0 ; :::; z�Ng, we obtain the optimal estimate ~xk = z�N with assoiatedestimation error ek := ~xk�xk. Using this estimate, we de�ne the problem data�mpk := ~xk for the NMPC problem,P(�mpk ) minvl 	(zN) + N�1Xl=0  (zl; vl) (3a)s.t. zl+1 = f(zl; vl) l = 0; : : :N � 1 (3b)z0 = ~xk (3)zl 2 X; vl 2 U (3d)where vl 2 <nu are internal deision variables. This problem has (N � 1)� nudegrees of freedom orresponding to vl; l = 0; :::; N � 1. Here, we assume thatthe states and ontrols are restrited to the domains X and U, respetively. Thestage ost is de�ned by  (�; �) : <nx+nu ! <, while the terminal ost is denotedby 	(�) : <nx+nu ! <. The ontrol ation is extrated from the trajetoryoptimal trajetory fz�0 :::z�N v�0 ; :::; v�N�1g as uk = v�0 := h(~xk), and h(�) denotesthe feedbak law. Note that this ontrol ation is inaurate beause the trueInt. Workshop on Assessment and Future Diretions of NMPCPavia, Italy, September 5-9, 2008 2



Invited Paperstate of the plant is xk and not the estimate ~xk. That is, the estimation errorats as an additional disturbane. At the next time, the plant will evolve as,xk+1 = f(xk; h(~xk)) + �k; yk+1 = h(xk+1) + vk+1 (4)With this, we shift the measurement sequene one step forward to obtain�mhek+1 := fyk�N+1; :::; yk+1; uk�N+1; :::; ukg, and we solve the new MHE problem.Having the new state estimate ~xk+1 we solve the next NMPC problem.Note that the above formulations are rather simpli�ed. This makes themonvenient for the oneptual analysis in subsequent setions. In pratial appli-ations, both NMPC and MHE problems are solved as general ontinuous-timeDAE-onstrained optimization problems. In this work, we assume that a fulldisretization approah is used to derive the disrete-time NMPC and MHEformulations. In this ase, these NLP problems will be sparse. This is a ruialproperty to be exploited in the following setions.A problem that is normally enountered in model-based ontrol frameworksis that there exists a omputational feedbak delay equal to the solution timeof the MHE and NMPC problems. In large-sale appliations (say nx � 100�10; 000), this omputational delay might dominate the time onstant of the plantand destabilize the proess. Therefore, we seek to derive strategies to reduethe on-line omputational time. The �rst ruial omponent of these strategiesis a fast NLP algorithm. In the next setion, we disuss some of the advantagesthat interior-point NLP solvers o�er for the solution of very large problems.3 Full-Spae Interior-Point NLP SolversThe NLP problems (2) and (3) an be posed in the general form,N (�) minx F (x; �) (5a)s:t: (x; �) = 0 (5b)x � 0 (5)where x 2 <nx is variable vetor ontaining all the states and ontrols and � isthe data vetor.Full-spae interior-point solvers have beome a popular hoie for the solu-tion of large-sale and sparse NLPs. In partiular, the solvers LOQO, KNITROand IPOPT are widely used. In this work, we use IPOPT, an open-soure NLPsolver originally developed in our researh group [1℄. In interior-point solvers,the inequality onstraints of problem (5) are handled impliitly by adding barrierterms to the objetive funtion,minx F (x; �)� �` nxXj=1 ln(x(j)); s.t. (x; �) = 0 (6)where x(j) denotes the jth omponent of vetor x. Solving (6) for a deayingsequene of �` ! 0; ` ! 1 results in an eÆient strategy to solve the originalNLP (5). IPOPT solves the Karush-Kuhn-Tuker (KKT) onditions of thissequene of barrier problems (6),rxF (x; �) +rx(x; �)� � � = 0 (7a)(x; �) = 0 (7b)X �V e = �`e (7)Int. Workshop on Assessment and Future Diretions of NMPCPavia, Italy, September 5-9, 2008 3



Invited Paperwhere X = diag(x);V = diag(�) and e 2 <nx is a vetor of ones. Symbols� 2 <n� and � 2 <nx are Lagrange multipliers for the equality onstraints andbounds, respetively. To solve this system of nonlinear equations we apply an ex-at Newton method with the iteration sequene initialized at sTo := [xTo �To �To ℄.At the ith iteration, the searh diretion �si = si+1 � si is omputed by lin-earization of the KKT onditions (7),24 Hi Ai �InxAiT 0 0Vi 0 Xi 3524 �xi��i��i 35= �24rxF (xi)+Ai�i��i(xi)XiVie� �`e 35 (8)where Ai := rx(xi; �), Hi 2 <nx�nx is the Hessian of the Lagrange funtionL = F (xi; �) + �Ti (xi; �)� �iTxi and Inx denotes the identity matrix.We provide exat Hessian and Jaobian information through the modelingplatform AMPL. With this, Newton's method guarantees fast loal onvergeneand is able to handle problems with many degrees of freedom without alteringthese onvergene properties. After solving a sequene of barrier problems for�` ! 0, the solver returns the optimal solution triplet sT� = [xT� �T� �T� ℄ whihimpliitly de�nes the ative-set (set of variables satisfying x(j) = 0).3.1 Computational IssuesSolving the KKT system (8) is the most omputationally intensive step inthe solution of the NLP. A ruial advantage that interior-point solvers o�erover ative-set solvers is that the struture of the KKT matrix in (8) does nothange between iterations. This failitates the design of tailored linear algebrastrategies to exploit speial strutures. For instane, the KKT matrix arisingfrom DAE-onstrained optimization problems has a natural forward struture(almost-blok-diagonal) in time and lassial Riati-like reursions and on-densing tehniques are often applied, where the omplexity of these solutionstrategies sales linearly with the horizon length N , but ubially with thenumber of states nx and ontrols nu. On the other hand, speialized strategieshave been developed that redue the ubi omputational omplexity and alsopreserve numerial stability in the fae of unstable dynamis [3, 4℄.In IPOPT, we use a symmetri inde�nite fatorization of the KKT matrix(with ��i eliminated). With this, we exploit only the sparsity pattern of theKKT matrix. The omputational omplexity of this strategy is in general veryfavorable, saling nearly linearly and at most quadratially with the overall di-mensions of the NLP (e.g. length of predition horizon, number of states andnumber of degrees of freedom). This general approah also remains stable in thefae of unstable dynamis. However, signi�ant �ll-in and omputer memorybottleneks might arise during the fatorization step if the sparsity pattern isnot properly exploited. In order to fatorize the KKT matrix, we use the linearsolver MA57 from the Harwell library [5℄. Sine the struture of the KKT matrixdoes not hange between iterations, the linear solver needs to analyze the spar-sity pattern only one. During this analysis phase, the linear solver permutes thematrix to redue �ll-in and omputer memory requirements in the fatorizationphase. Two reordering strategies are normally used in MA57. The �rst is anapproximate minimum degree (AMD) ordering algorithm while the seond is anested dissetion algorithm based on the multi-level graph partitioning strategy,Int. Workshop on Assessment and Future Diretions of NMPCPavia, Italy, September 5-9, 2008 4



Invited Paperimplemented in Metis [6℄. For very large-sale problems, these nested dissetiontehniques exel at identifying high-level (oarse-grained) strutures and thusplay a ruial role in the fatorization time and reliability of the linear solver.This notable advanes in numerial linear algebra an dramatially expand theappliation sope of NMPC and MHE.IPOPT also applies a regularization sheme to the KKT matrix in order toaount for diretions of negative urvature and rank-de�ient Jaobians whihare ommonly enountered in highly nonlinear NLPs and/or ill-posed formu-lations. Diretions of negative urvature are deteted impliitly through thelinear solver, whih returns the so-alled inertia of the KKT matrix (number ofpositive, negative and zero eigenvalues). If the inertia is orret at the solution,no regularization is neessary and we an guarantee that the optimal point is awell-de�ned minimum satisfying strong seond order onditions (SSOC) and thelinear independene quali�ation of the onstraints (LICQ) [7℄. In the ontext ofNMPC and MHE, heking for SSOC is important sine this is diretly relatedto properties of the dynami system suh as ontrollability and observability.Consequently, heking for SSOC through the inertial properties of the KKTmatrix is another important advantage of using a general fatorization strategy,as opposed to other tailored linear algebra strategies.3.2 NLP Sensitivity and Warm-StartsProblem (5) is parametri in the data � and the optimal primal and dual vari-ables an be treated as impliit funtions of �. For a suÆiently small �`, theKKT onditions (7) of the barrier problem (6) an be expressed as '(s(�); �) = 0and we de�ne K�(�0) as the KKT matrix in (8).We are interested in omputing fast approximate solutions for neighboringproblems around an already available nominal solution s�(�0). In order to dothis, we make use of the following lassial results,Theorem 1 (NLP Sensitivity) [7, 8℄. If F (�) and (�) of the parametri prob-lem N (�) are twie ontinuously di�erentiable in a neighborhood of the nominalsolution s�(�0) and this solution satis�es LICQ and SSOC, then s�(�0) is anisolated loal minimizer of N (�0) and the assoiated Lagrange multipliers areunique. Moreover, for � in a neighborhood of �0 there exists a unique, on-tinuous and di�erentiable vetor funtion s�(�;N) whih is a loal minimizersatisfying SSOC and LICQ for N (�). Finally, there exists a positive Lipshitzonstant L suh that ks�(�;N) � s�(�0; N)k � Lk� � �0k along with a posi-tive Lipshitz onstant LF suh that the optimal values F (�) and F (�0) satisfykF (�)� F (�0)k � LFk� � �0k.Under these results, a step �s(�) omputed from,K�(�0)�s(�) = � ('(s�(�0); �)� '(s�(�0); �0))= �'(s�(�0); �): (9)with �s(�) = ~s(�) � s�(�0), is a Newton step taken from s�(�0) towards thesolution of a neighboring problem N (�). Consequently, ~s(�) satis�es,k~s(�)� s�(�)k � Lsk� � �0k2 (10)Int. Workshop on Assessment and Future Diretions of NMPCPavia, Italy, September 5-9, 2008 5



Invited Paperwith Ls > 0. Furthermore, sine the KKT matrix K�(�0) is already availablefrom the solution of the nominal problem N (�0), omputing this step requiresonly a single baksolve whih an be performed orders of magnitude faster thanthe fatorization of the KKT matrix.Sine the approximate solution ~s(�) is aurate to �rst order, we an useit as the initial guess so(�) to warm-start the NLP N (�). For instane, if theperturbation (� � �0) does not indue an ative-set hange, we an �x � to asmall value (e.g. say 1 � 10�6) and reuse the KKT matrix K�(�0) to performfast �xed-point iterations on the system,K�(�0)�si(�) = �'(si(�); �) (11)with so = s�(�0). With this, we an redue the primal and dual infeasibilityof the perturbed problem N (�) until no further progress an be made withthe �xed KKT matrix. For suÆiently small perturbations, these fast �xed-point iterations an onverge to the solution of the perturbed problem s�(�).However, for large perturbations, the KKT matrix needs to be reevaluated andrefatorized.When the perturbation ���0 indues an ative-set hange, the linearizationof the omplementarity relaxation (7) ontained in the nominal KKT matrixK�(�0) will drive the �rst Newton iteration outside of the feasible region andthe sensitivity approximation is inonsistent. To ompute a fast sensitivityapproximation, one ould reuse the fatorization of the KKT matrix througha Shur omplement sheme to orret the ative-set (e.g. add slak variablesand onstraints to drop and �x variables and bound multipliers) [9℄. This isequivalent to an ative-set sequential quadrati programming (SQP) iteration.Fixed-point iterations an also be performed in this way.In the ontext of the proposed MHE and NMPC formulations, we de�ne theoptimal solutions,s�MHE := fz�0 ; :::; z�N�1; z�N ; ��1; :::; ��N�1; ��Ng (12a)s�MPC := fz�0 ; :::; z�N�1; z�N ; v�0 ; :::; v�N�2; v�N�1; ��0; :::; ��N�1; ��Ng: (12b)The assoiated sensitivity approximations are denoted as ~sMHE and ~sMPC ,respetively, and the orresponding warm-start vetors as soMHE and soMPC .Notie that we have not inluded the bound multipliers in order to simplify thepresentation.4 Advaned-Step MHE and NMPC StrategiesIt is possible to minimize the on-line time required to solve the MHE problemand then the NMPC problem to two fast baksolves using an advaned-stepframework [2, 10℄. Imagine that at time tk we know the ontrol ation uk andwe would like to obtain an estimate of the future state xk+1 but we don't knowthe future measurement yk+1. Nevertheless, we an use the urrent estimate ~xkand ontrol uk to predit the future state and assoiated measurement,�xk+1 = f(~xk ; uk); �yk+1 = �(�xk+1) (13)to omplete the problem data ��mhek+1 := fyk+1�N ; :::; �yk+1; uk�N ; :::; ukg and startthe solution of the predited problemM(��mhek+1 ). Simultaneously, we an use theInt. Workshop on Assessment and Future Diretions of NMPCPavia, Italy, September 5-9, 2008 6



Invited Paperpredited state to de�ne ��mpk+1 := �xk+1 and start the solution of the preditedproblem P(��mpk+1 ). Note that both problems are deoupled so this an be donesimultaneously and thus redue the sampling time. At the solution of theseproblems, we hold the orresponding KKT matries Kmhe� and Kmp� .One the true measurement yk+1 beomes available, we ompute a fast bak-solve withKmhe� to obtain an approximate state estimate ~xask+1 whih di�ers fromthe optimal state estimate ~xk+1 and the true state xk+1. Using the approximatestate estimate we perform a fast baksolve with Kmp� to obtain the approxi-mate ontrol ation uk+1 = has(~xask+1). Of ourse, this also di�ers from the idealNMPC ontrol h(~xk+1).To warm-start the bakground problems at the next sampling time, we usethe approximate solutions ~sMHE and ~sMPC to generate the shifted warm-startsequenes for the next problems M(��mhek+2 ) and P(��mpk+2 ) [11℄,soMHE := f~z1; :::; ~zN ; f(~xask+1; uk+1); ~�2; :::; ~�N ; 0g (14a)soMPC := f ~z1; :::; ~zN ; ~zN ; ~v1; :::; ~vN�1; ~vN�1; ~�1; :::; ~�N ; ~�Ng: (14b)from whih we update the KKT matries in between sampling times. Note thatthe approximate solutions ~sMHE and ~sMPC an also be re�ned in bakgroundusing �xed-point iterations with Kmhe� and Kmp� before using them to gener-ate the warm-start sequenes. We summarize the proposed framework for theadvaned-step MHE and NMPC strategies, asMHE and asNMPC, respetively,as follows:In bakground, between tk and tk+1:1. Use urrent estimate ~xask and ontrol uk to predit the future state �xk+1 =f(~xask ; uk) and orresponding output measurement �yk+1 = �(�xk+1).2. De�ne the data ��mhek+1 = fyk+1�N :::yk; �yk+1; uk+1�N ; :::; ukg and ��mpk+1 =�xk+1. Use the available warm-start points soMHE and soMPC to solve thepredited problems MN(��mhek+1 ) and PN(��mhek+1 ).3. Hold the KKT matries Kmhe� and Kmp� .On-line, at tk+1:1. Obtain the true measurement yk+1 and de�ne the true MHE data �mhek+1 .Reuse fatorization of Kmhe� to quikly ompute ~sMHE from (9) and ex-trat ~xask+1.2. Use ~xask+1 to de�ne the true NMPC problem data �mpk+1 . Reuse fatorizationofKmp� to quikly ompute ~sMPC from (9) and extrat uk+1 = has(~xask+1).3. If neessary, re�ne ~sMHE and ~sMPC . Generate the warm-starts soMHEand soMPC , set k := k + 1, and return to bakground.4.1 Stability IssuesIt is lear that both the state estimate and the assoiated ontrol ation aresuboptimal due to the presene of NLP approximation errors. Here, we areInt. Workshop on Assessment and Future Diretions of NMPCPavia, Italy, September 5-9, 2008 7



Invited Paperinterested in assessing the impat of these errors in the stability of the losed-loop system. From the ontroller point of view, we are interested in �ndingsuÆient onditions under whih the losed-loop remains stable in the fae ofdisturbanes and NLP sensitivity errors. Due to spae limitations we outlinethe main results here and refer the interested reader to [2℄ for more details.To start the disussion, we �rst note that solving the predited problemP(�xk+1) in the asNMPC ontroller is equivalent to solving the extended problem,PN+1(�mpk ) minvl 	(zN) +  (xk; uk) + N�1Xl=0  (zl; vl) (15a)s.t. zl+1 = f(zl; vl) l = 0; : : :N � 1 (15b)z0 = f(xk; uk) (15)zl 2 X; vl 2 U (15d)with �xed xk, uk = h(xk) and �mpk = fxk; h(xk)g. For the optimal or idealNMPC ontroller (instantaneous optimal solutions), we onsider the neighbor-ing osts of the extended problems with perfet state information Jh(xk)xk :=JN+1(xk; h(xk)) and Jh(xk+1)xk+1 := JN+1(xk+1; h(xk+1)) as referene points. Asobserved by Muske and Rawlings [12℄, sine the implemented ontrol ation isbased on the state estimate ~xk oming from MHE and not on the true state xk,we onsider this as an additional disturbane to the losed-loop system throughthe ost Jh(x̂k+1)x̂k+1 where x̂k+1 = f(xk; h(~xk)) + �k. From Lipshitz ontinuity ofthe ost funtion we have,jJh(x̂k+1)x̂k+1 � Jh(xk+1)xk+1 j � LJLfLhkxk � ~xkk:Expliit bounds and onvergene properties on the estimator error kxk�~xkk anbe established for the MHE formulation (2) [15℄. Moreover, we an also treatthis error as another disturbane �k and de�ne ~xk := xk + �k. This allows us torestate the following robustness result for the ombined asMHE and asNMPCstrategies.Theorem 2 (Theorem 6 in [2℄ ) Assume that the NLPs for (2) and (3) an besolved within one sampling time. Assume also that nominal and robust stabil-ity assumptions for ideal NMPC hold (see [2℄), then there exist bounds on thenoise � and v for whih the ost funtion JN+1(x), obtained from the ombinedasMHE-asNMPC strategy, is an input to state stable (ISS) Lyapunov funtion,and the resulting losed-loop system is ISS stable.5 Case StudyWe demonstrate the performane of the proposed advaned-step framework ona low-density polyethylene (LDPE) tubular reator proess. A shemati rep-resentation of a typial multi-zone LDPE reator is presented in Figure 1. Inthese reators, high-pressure (2000-3000 atm) ethylene polymerizes through afree-radial mehanism in the presene of peroxide initiators, whih are fedat multiple zones in order to start and stop the polymerization. The largeamounts of heat produed by polymerization are removed at eah zone usingInt. Workshop on Assessment and Future Diretions of NMPCPavia, Italy, September 5-9, 2008 8
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Cold Side Streams Thermocouple

Figure 1: Shemati representation of multi-zone LDPE tubular reator.ooling water, along with multiple feeds of ethylene that ool the ethylene-polymer reating mixture owing inside the reator ore. Initiator ow rates,ethylene side-streams ow rates and temperatures, and the ooling water inlettemperatures and ow rates an be manipulated to ahieve an axial reatortemperature pro�le that produes a desired polymer grade. A ommon prob-lem in these reators is that polymer aumulates (i.e., fouls) on the reatorwalls. The resulting fouling layer bloks heat ow to the jaket ooling waterand an be seen as a persistent dynami disturbane. In the absene of a suit-able ontrol system, this fouling layer will eventually lead to thermal runaway.A entralized model-based ontrol strategy based on a �rst-priniples reatormodel an deal e�etively with fouling monitoring, zone ontrol deoupling anddiret optimization of the overall proess eonomis (e.g. maximize prodution,minimize energy onsumption). Nevertheless, LDPE reator models onsist ofvery large sets of PDAEs that desribe the evolution of the reator mixture andof the ooling water temperature along the axial and time dimension. Afteraxial disretization, a typial LDPE reator model an easily ontain more than10,000 DAEs.An MHE estimator and an NMPC ontroller based on �rst-priniples LDPEreator models have been reported in [13, 14℄. While these reports stress the ben-e�ts of these strategies for the LDPE proess, little emphasis has been plaed onthe omputational limitations assoiated to their on-line solution. Here, we on-sider these issues through the proposed advaned-step ontrol framework wherewe e�etively minimize the on-line omputation with negligible approximationerrors. We simulate the senario in whih the reator is fouled and leanedover time, by ramping the reator heat-transfer oeÆients (HTCs) down andup. Beause this e�et is diretly reeted through HTCs in the LDPE reatormodel, we do not estimate the proess disturbane �k, and instead use the MHEestimator to estimate the HTCs and the unmeasured model states (e.g. walltemperature pro�le) at eah time step. For the MHE estimator, yk onsists ofmultiple measurements of the reator ore temperature and the output jakettemperatures in eah zone. The objetive of the NMPC ontroller is to usethe estimated reator state ~xask to drive the axial reator temperature pro�le tothe spei�ed target pro�le. In order to do this, the NMPC ontroller uses themultiple inputs distributed along the reator to obtain uk = has(~xask ). In thissimulated senario, we generate the plant response xk from the model with thetrue HTCs. In addition, the plant is initialized at a di�erent state from thatof the NMPC ontroller. Finally, we orrupt the output measurements withGaussian noise.Sine the plant response di�ers from that of the NMPC ontroller preditionand we introdue noise, the asMHE estimator will see a di�erene between theInt. Workshop on Assessment and Future Diretions of NMPCPavia, Italy, September 5-9, 2008 9
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Optimal Control
Sensitivity ControlFigure 2: Performane of advaned-step MHE and NMPC in LDPE ase study.measured and the predited outputs (see top graph of Figure 2) and will orreton-line using NLP sensitivity. We have found that the approximation errors arenegligible and the asMHE estimator has almost idential onvergene propertiesto that of the ideal MHE estimator. In the middle graph of Figure 2, we seethat while the estimate of the reator wall pro�le is inaurate at t0, the dashedand solid lines oinide by t10, and the asMHE estimator onverges to the truereator wall pro�le (and the one obtained from ideal MHE) using reator oremeasurements in about 10 time steps. Using the estimated states and HTCs,the asNMPC ontroller then updates the predited state on-line. In the bottomgraph of Figure 2 we present the losed-loop response of one of the jaket waterinlet temperatures for the asNMPC ontroller and its ideal NMPC ounterpart.As an be seen, both ontrol ations are idential. In this graph we an alsoappreiate how the HTC yles inuene the ontroller response.In the top graph of Figure 3 we present the total wall-lok time requiredto re�ne the perturbed solution, generate the warm-start point and solve thebakground NMPC problem. This time also inludes some overhead omingfrom I/O ommuniation tasks and from AMPL, whih requires some time togenerate the derivative information before alling the NLP solver. A preditionhorizon of N = 10 time steps (20 minutes) and sampling times of 2 minutes havebeen used. The NMPC problem onsists of an NLP with 80,950 onstraints and370 degrees of freedom. As an be seen, the overall bakground time is around60 seonds and is well below the spei�ed sampling time. A single fatorizationof the KKTmatrix takes 15.34 seonds, a single �xed-point iteration requires 0.1seonds, and an average of 5 �xed point iterations are required to solve the NLP.In the middle graph of Figure 3, we present total bakground times for the MHEestimator. The estimator is initialized in bath mode (aumulate measurementsuntil an estimator horizon ofN time steps is �lled). One the estimation horizonis omplete, the bakground tasks take around 70 seonds to be ompleted. TheMHE problem onsists of an NLP with 80,300 onstraints and 648 degrees offreedom. One �xed-point iteration requires 0.12 seonds and an average of 10�xed point iterations solve the NLP. In the bottom graph of Figure 3, we presentInt. Workshop on Assessment and Future Diretions of NMPCPavia, Italy, September 5-9, 2008 10
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Nested Dissection
AMD

Figure 3: Computational results. Bakground tasks NMPC (top). Bakgroundtasks MHE (middle). Sale-up of NMPC problem (bottom).sale-up results of the solution time for the NMPC problem with inreasinghorizon length. We ompare the impat of AMD and nested dissetion sparsematrix reordering on the solution time of the bakground NLP problem (withoutre�nement or overhead). The multi-level nested dissetion strategy is moreeÆient here and ahieves a linear sale-up. Using this strategy, a N = 30NMPC problem with 242,850 onstraints and 1,110 degrees of freedom is solvedin around 2 minutes, the fatorization of the KKT matrix takes 32.31 seondsand a �xed-point iteration requires 0.33 seonds. The AMD strategy showsquadrati sale-up and the largest problem requires 4 minutes. This di�erenean be attributed to the fat that the Metis nested dissetion algorithm is muhmore eÆient in identifying oarse-grained strutures in the NMPC problem(LDPE multi-zone model, DAE forward struture, et.), while AMD tends tofous on �ne-grained strutures. All alulations were obtained using a quad-ore Intel proessor running Linux at 2.4 GHz.6 ConlusionsIn this work, we present omputational strategies for MHE and NMPC prob-lems. In partiular, a general solution framework based on interior-point NLPsolvers and sensitivity onepts is onsidered. We emphasize that exploitingthe overall sparsity pattern of the KKT matrix arising in NMPC and MHEproblems leads to a omputationally eÆient and stable strategy to omputethe Newton step. We analyze the impat of di�erent reordering tehniques ofthe KKT matrix on the fatorization time and omputer memory limitations.In partiular, we present NLP sensitivity-based strategies for MHE and NMPCthat redue the on-line omputation time to only two fast baksolves. This neg-ligible omputation e�etively removes the problem of omputational delay evenfor very large NLP models. Finally, we disuss stability issues of the NMPController in the fae of sensitivity errors and demonstrate the developments inInt. Workshop on Assessment and Future Diretions of NMPCPavia, Italy, September 5-9, 2008 11
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